8 research outputs found

    Automatic Detection of Laryngeal Pathology on Sustained Vowels Using Short-Term Cepstral Parameters: Analysis of Performance and Theoretical Justification

    Get PDF
    The majority of speech signal analysis procedures for automatic detection of laryngeal pathologies mainly rely on parameters extracted from time domain processing. Moreover, calculation of these parameters often requires prior pitch period estimation; therefore, their validity heavily depends on the robustness of pitch detection. Within this paper, an alternative approach based on cepstral- domain processing is presented which has the advantage of not requiring pitch estimation, thus providing a gain in both simplicity and robustness. While the proposed scheme is similar to solutions based on Mel-frequency cepstral parameters, already present in literature, it has an easier physical interpretation while achieving similar performance standards

    Introducing non-linear analysis into sustained speech characterization to improve sleep apnea detection

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-25020-0_28Proceedings of 5th International Conference on Nonlinear Speech Processing, NOLISP 2011, Las Palmas de Gran Canaria (Spain)We present a novel approach for detecting severe obstructive sleep apnea (OSA) cases by introducing non-linear analysis into sustained speech characterization. The proposed scheme was designed for providing additional information into our baseline system, built on top of state-of-the-art cepstral domain modeling techniques, aiming to improve accuracy rates. This new information is lightly correlated with our previous MFCC modeling of sustained speech and uncorrelated with the information in our continuous speech modeling scheme. Tests have been performed to evaluate the improvement for our detection task, based on sustained speech as well as combined with a continuous speech classifier, resulting in a 10% relative reduction in classification for the first and a 33% relative reduction for the fused scheme. Results encourage us to consider the existence of non-linear effects on OSA patients’ voices, and to think about tools which could be used to improve short-time analysis.The activities described in this paper were funded by the Spanish Ministry of Science and Innovation as part of the TEC2009-14719-C02-02 (PriorSpeech) project

    On the design of automatic voice condition analysis systems. Part I: Review of concepts and an insight to the state of the art

    No full text
    corecore